

01/201336

The Tools

Using an SQL database is commonly the first
choice for this task, but this is only practical pro-
vided you are dealing with small amounts of da-

ta. At ONZRA, have repeatedly observed attempts to im-
plement reporting dashboards with MySQL databases,
many of which have been discouraging. These attempts
have range from databases that have grown so large
that queries take minutes to generate reports, to custom-
ers that spin up a hundreds of individual servers, each to
handle a portion of their dataset., SQL has shown to be
problem prone when scaled up for use with extremely
large data sets. Apache Cassandra, on the other hand, is
a much better fit for large scale operations.

Why Cassandra?
Cassandra is a NOSQL database that will scale hori-
zontally as you add nodes to your cluster. Cassandra
was designed to be non-centralized so there is no sin-
gle bottle neck that would lead to the database clus-
ter becoming over strained. It is extremely efficient with
its reads. Given a key to lookup, Cassandra internal-
ly knows exactly which node in the cluster owns the

“key” and from there can pull the row off of disk in very
few hard drive seeks. With some planning, the data is
stored how you want it retrieved; you can have reporting
queries that are measured in milliseconds as opposed
to seconds. Cassandra’s write path is also extremely ef-
ficient. All of these features make Cassandra is a good
solution for storing reporting data for display in real time
dashboards.

Data Storage in Cassandra
In Cassandra, data is stored in Column Families. Within
a column family you will have multiple rows each identi-
fied by a unique key, These rows will have multiple col-
umns, each identified a name and containing value. As
seen by Figure 1, the data within can be thought of as
a multi-leveled dictionary of data. For example {‘Row
1’:{‘Column 1’:‘Value’},...}.

The columns within the rows are stored in order
based on the name of the column. Apache Cassan-
dra uses different “Comparators” to determine this sort
order. There are various comparators that are built in;
for example, BytesType (the default), DateType, UT-

Reporting with Cassandra

Quite commonly the need arises to analyze data over time
and provide quick and easy access to those statistics via a
dashboard. Providing access to real time stats can be difficult as
the quantity of data being analyzed grows. This article will cover
one potential solution for storing, and querying statistical data
with Apache Cassandra for real time report generation.

Figure 1. Representation of data stored within Cassandra

en.sdjournal.org 37

REPORTING WITH CASSANDRA

F8Type, LongType, etc. While ByteType compares the
values based on the hexadecimal bytes in the string,
the LongType compares values based on the 8 byte
long value. As a result you would see different order-
ing for a row with columns named 12, 2, and 11 with a
comparator of UTF8Type then you would with a com-
parator of LongType. Having the proper ordering of the
columns is critical for the reporting implementation,
otherwise you could get stats from outside of your re-
quested time frames in your results.

Cassandra also has the ability to query the database for
ranges of data. For example, if your columns are named
1, 2, 3, 4, and 5 in row R1 you can ask Cassandra to give
you R1 columns 2-4. When Cassandra does the internal
lookup of this range, it uses the column’s comparator to
determine what results to send you. Below is the format
for a range query using CQL (Listing 1).

Note
In this example we are using the CQL Shell as the CLI
does not have the ability to run range queries.

Each column also has an associated value. Just as a
column name has a “comparator”, values have “valida-
WRUV �́�7KH�YDOLGDWRU�LGHQWL¿HV�WKH�GDWD�W\SH�RI�WKH�YDOXH�
being stored. Cassandra has plenty of built in valida-
tors, for example: BytesType, UTF8Type, IntegerType,
DateType, DoubleType, etc. One very unique valida-
tor we will use is the CounterColumnType. This type
lets ApacheCassandra know the data should be vali-
dated as a “Counter”. Counters are a special column
type that allow you to increment or decrement the val-
ue stored within that column in one smooth operation.
In Listing 2 you will see the creation and manipulation
of the counters.

Note
This feature was added in Cassandra version 0.8.0.

Real World Example
Lets say, for example, that “Company A” has a blogging
service. They provide their customers with credentials
for accessing an API. This API has 4 methods: post/list,
post/add, post/edit and post/delete. Company A limits
what API calls you can make on a free account, so they
want to provide a real time reporting dashboard for each
customer. This allows the customers to view their API
utilization and determine if they are approaching the
maximum allowed use.

The company decides to provide a Method Utilization
graph and a Method Comparison graph. The method
utilization graph (Figure 2) displays how popular a par-
ticular method call was over a period of time. In this par-
ticular graph, the X-Axis represents the Time Frame for
which the stats apply, whereas the Y-Axis refers to how
often the event occurred.

The Method Comparison graph (Figure 3) shows how
often a particular method was called within a specified
time frame.

Both of the graphs above are easily generated in mil-
liseconds using Cassandra as the data backend, and

Listing 1. Range Query

.

$ cqlsh

cqlsh> use reporting;

cqlsh:reporting> select 2..4 from utilization where

key=’R1’;

 2 | 3 | 4

---+---+---

 1 | 1 | 1

Listing 2. Counters Schema / Counter Increment

create column family counterCF with

default_validation_class=CounterColumnType

INCR counterCF[‘key’][‘column’] BY 1;

Figure 2. Trending of “post/add” Method over time

01/201338

The Tools

both require only one simple lookup and one row hit to
accomplish the task.

In this example we will say we want to trend at three
different time frames: hourly, daily, and monthly. This
would allow for the following use cases:

��� 3URYLGH�D�PHWKRG�XWLOL]DWLRQ�JUDSK�DW�KRXUO\�JURXSLQJV�
��� 3URYLGH�D�PHWKRG�XWLOL]DWLRQ�JUDSK�DW�GDLO\�JURXSLQJV�
��� 3URYLGH�D�PHWKRG�XWLOL]DWLRQ�JUDSK�DW�PRQWKO\�JURXS-

ings.
��� 3URYLGH� D� PHWKRG� FRPSDULVRQ� JUDSK� IRU� D� VSHFL¿F�

hour
��� 3URYLGH�D�PHWKRG�FRPSDULVRQ�JUDSK�IRU�D�VSHFL¿F�GD\
��� 3URYLGH� D� PHWKRG� FRPSDULVRQ� JUDSK� IRU� D� VSHFL¿F�

month

Technical Implementation
In this example all of the column families will be created
within a reporting keyspace. the following cassandra-cli
Listing 3 describes how you can create that keyspace.

Graph 1 – Method Utilization
For the Method Utilization graph (Figure 2) we want to
report on the API queries that are made over a range of
specified time frames. In this case, the row key will be
the item we are trending, the column name will be the
time frame, and the column value will be the quantity of
occurrences.

For the row key, we will use a key format of
<Account>:<Method>. In the case of trending the “post/
add” method for account 5 we would have a row key
of 5:post/add. All statistics for this particular account /
method will exist within this row.

Note
In this particular example we are using “:” as a separa-
tor between the account and method; however, other
separators could be used if need be.

The column will represent the time frame the stat
is applicable for, and will use a LongType compara-
tor. The names of the columns will be in the format of
“YYYYMMDDHH”, “YYYYMMDD”, and “YYYYMM”
for hourly, daily, and monthly time frames (Listing 4).

When logging an API call for Account 5 to the post/
add Method on January 02, 2013 5PM a counter for
each time frame would be incremented.

��� 5RZ� ³��SRVW�DGG´� &ROXPQ� ³����������´� WR� LQFUH-
ment the hourly counter

��� 5RZ�³��SRVW�DGG´�&ROXPQ�³��������´�WR� LQFUHPHQW�
the daily counter

��� 5RZ� ³��SRVW�DGG´� &ROXPQ� ³������´� WR� LQFUHPHQW�
the monthly counter

This allows us to run range queries for a series of
timeframes. In order to run a report on the calls to
“post/add” for January 1st through January 2nd broken
down by hour, Cassandra would be queried for Row
“5:post/add” Columns “2013010100” – “2013010223”.
To run the same date range grouped by day Cas-
sandra would be queried for Row “5:post/add” Col-
umns “20130101” – “20130102”. By storing data in this
means with the LongType comparator, there will nev-
er be overlapping time scopes when making our range
queries.

Figure 3. API Method Comparison Graph for a speci!ed time
window

Listing 3. Creating the reporting keyspace
$ cassandra-cli -host localhost -port 9160

[default@unknown] CREATE KEYSPACE reporting;

[default@unknown] USE reporting;

Listing 4. Utilization Schema

$ cassandra-cli -host localhost -port 9160

[default@unknown] USE reporting;

[default@reporting] create column family utilization

with key_validation_class=UTF8Type

and comparator = LongType

and default_validation_class=CounterColumnType;

Listing 5. Comparison Schema

$ cassandra-cli -host localhost -port 9160

[default@unknown] USE reporting;

[default@reporting] create column family comparison

with key_validation_class=UTF8Type

and comparator = UTF8Type

and default_validation_class=CounterColumnType;

en.sdjournal.org 39

REPORTING WITH CASSANDRA

Note that responses returned from Cassandra may
be missing keys. For example if “post/add” was never
called for customer 5 on January 1st, then we would be
missing a column for that date all together. One should
assume all time frames that do not have a column re-
turned in the result set have a count of 0.

Graph 2 – Method Comparison
For the Method Comparison graph (displayed in Fig-
ure 3) we want to report on the API queries that are
made during a specific frame by a specific account.
This gives us the ability to present a pie chart where
each slice is a method call. In this case, the row key
will be the item we are trending, the column name will
be the method, and the column value will be the quan-
tity of occurrences.

For the row key, we will use a format of
<Account>:<Time Frame>. Time frame will be in
the format of “YYYYMMDDHH”, “YYYYMMDD”, and
“YYYYMM” for hourly, daily, and monthly time frames.
For example, the row key for account 5 covering the
API calls made during January of 2013 would be

“5:201301”. The column names will be the API calls
that were made. For example: “post/add” or “post/edit”.
These columns will be implemented as counters, and
the values will be the counts (Listing 5).

If an API call was logged for Account 5 to the post/add
Method on January 02, 2013 5PM the following coun-
ters would be incremented:

��� 5RZ� ³��� ����������´� &ROXPQ� ³SRVW�DGG´� WR� LQFUH-
ment the hourly counter

��� 5RZ�³�����������´�&ROXPQ�³SRVW�DGG´�WR�LQFUHPHQW�
the daily counter

��� 5RZ� ³��� ������´� &ROXPQ� ³SRVW�DGG´� WR� LQFUHPHQW�
the monthly counter

This allows us to easily query for a particular time
frame and return the counts of all API calls that were
made during that time frame.

Real Time Inserts
Given the above design, as each API call comes in, 6
counters would get incremented. If reporting was done

Listing 6. Counter Increments

$ cassandra-cli -host localhost -port 9160

[default@unknown] USE reporting;

[default@reporting] INCR utilization[‘5:post/add’][2013010205] BY 1;

[default@reporting] INCR utilization[‘5:post/add’][20130102] BY 1;

[default@reporting] INCR utilization[‘5:post/add’][201301] BY 1;

[default@reporting] INCR comparison[‘5:2013010205’][‘post/add’] BY 1;

[default@reporting] INCR comparison[‘5:20130102’][‘post/add’] BY 1;

[default@reporting] INCR comparison[‘5:201301’][‘post/add’] BY 1;

Listing 7. Method Utilization Query

$ cqlsh

cqlsh> use reporting;

cqlsh:reporting> select 20130101..20130103 from utilization where key=’5:post/add’;

 20130101 | 20130103

----------+----------

 2 | 5

Listing 8. Method Comparison Query

 $ cassandra-cli -host localhost -port 9160

[default@unknown] USE reporting;

[default@reporting] GET comparison[‘5:2013010205’];

=> (counter=post/add, value=124)

=> (counter=post/delete, value=10)

=> (counter=post/edit, value=75)

=> (counter=post/list, value=210)

Returned 4 results.

01/201340

The Tools

on fewer time scopes, the number of incremented coun-
ters would decrease and if reporting on additional time
scopes there would be additional counters to get incre-
mented for each logged API query. Below is an example
of how data would be logged for each method using the
Cassandra CLI (Listing 6).

Even though 6 inserts per API query seems like a lot,
Cassandra is very write efficient due to the fact that re-
cords get written directly to in memory memtables.

Querying The Data
Pulling records out of the database is efficient, as each
report is a single API query that retrieves one individual
key. Below is a python example for querying for the data
to generate a method utilization graph.

Note
In this example we are using the CQL Shell as the CLI
does not have the ability to run range queries (Listing 7).

Listing 8 is a sample query for retrieving the method
comparison results.

Additional Insights
Results do not have to be logged to Cassandra imme-
diately as the API requests occur. Since counters allow
us to increment by a value of our choice, we can store
counters locally in the application, then batch push
them to Cassandra in their a background process at
regular intervals. This technique can also be helpful if
batch processing of logs with Hadoop or another sys-
tem is already happening, since we can then pipe the
summary data directly to Cassandra for reporting in the
dashboard.

With slight tweaking of the above example we can
apply this to many different scenarios. Some exam-
ples: We could trend hits to a web page by having a

row key format of <Page> for trending PageUtilization
and a row key format of <Time Frame> for PageCom-
parison; or if you want to trend the popularity of file
downloads by country you could use a row key format
of <Download>:<Country> for DownloadUtilization
and a row key format of <Download>:<TimeFrame>
with Column name of <Country> for the Download-
Comparison.

In Conclusion
Using this reporting design, we can trend data utili-
zation over time, compare data during specific time
frames, as well as generate real time reporting data
for presentation within a dashboard. The most impor-
tant part is to plan ahead, decide what you want to re-
port on, then let Cassandra do the rest. This can all be
done because of Cassandra’s proven, fault tolerant,
scaleable nature.

JOSE AVILA III
Jose Avila III is a Research Director at ONZRA. Jose has spent
an astounding amount of time dealing with Enterprise Archi-
tecture, Development, and Security. He has architected and
overseen development of globally deployed, fault tolerant in-
frastructures, as well as contributed to various technology re-
search projects. Previously, Jose was a member of NeuStar’s
Software Architecture Review Board providing guidance on
future application development and security. Jose has also
lead many of their enterprise grade development projects in-
cluding their Managed Internal DNS service that was global-
ly deployed in some of the world’s largest networks. Jose has
also spoken at various conferences such as OARC, and Black
Hat, presented at RSA, and has given lectures at several uni-
versities hoping to bring security awareness to future devel-
opers. Jose also enjoys tequila tasting and collecting.

ONZRA
ONZRA focuses on highly
specialized enterprise grade
architecture and develop-
ment consulting services.
ONZRA has strategic partner
relationships with many of
the top engineering and se-
curity minds on the planet.
These are the best of breed,
industry movers and shak-

ers. You have read their books and used their tools; you
may have even seen them speak at conferences around the
world like Black Hat, RSA, and OARC. With services like soft-
ware architecture consulting and enterprise development
to vulnerability assessments, security design and training,
ONZRA is a one stop shop for the absolute best of the best
when it comes to technology problems that others can’t
solve.

	Cover
	Editor’s Note
	Contents
	DataStax Enterprise (DSE) 3.0 Offers Most Comprehensive Security Feature Set Among All NoSQL Provide
	DataStax Announces Community Edition 1.2 - Latest Version of Apache Cassandra Includes Free Version
	Evolution of Cassandra
	Interview with Jonathan Ellis
	Finding the right solution: Using the right tool for Big Data problems
	An Odyssey of Cassandra
	Apache Cassandra Quick Tour
	Getting Started with Cassandra, using Node.js
	Reporting with Cassandra
	Cassandra: Internal Storage
	COTS to Cassandra
	Cassandra in the Real World Migrating from a legacy database
	Cassandra Performance: An Ops Perspective

